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Entropy Rates: Intution
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Entropy Rates: Definition

Definition
The entropy rate of a random sequence X1,X2,X3, . . . is

lim
n→∞

H(X1,X2, . . . ,Xn)

n

whenever this limit exists.



Entropy Rates: Examples

Fixed-Length Repetitions

Repeatedly pick a letter at random and print it three times:

LLL EEE HHH QQQ MMM QQQ OOO TTT EEE YYY XXX GGG . . .

Geometric-Length Repetitions

Repatedly print a random letter k ∼ Geometric(1/2) times:

SSS P MMMMM D HHH K Z T D U C AAA I D TTT Y HHHH . . .

Indefinite Repetition

Pick a letter at random and print it forever:

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA . . .



Entropy Rates: Examples

A Uniform, Memoryless Process over X = {A, B, C, D}

B A C A D A B B D C B B A A D C A C B B A B B D A C B D B B . . .

A General Memoryless (i.i.d.) Process

I T T T S S T L C T E C _ E F A I R N P E I A I _ S A R H _ F M . . .

Random Walk from X1 = 0

0,−1,−2,−1,0,−1,0,1,0,−1, . . .

Xn ∼ Uniform{1,2, . . . ,2n}

1,1,3,6,11,26,58,70,185,435,467,909,2804,5262, . . .



Entropy Rates: Here Be Dragons?

Shannon’s Source Coding Theorem

In a sequence of i.d.d. samples, the average
surprisal converges to the entropy (by the
weak law of large numbers).

0010000110001

THE CAT IS ON

Theorem . . . ?
In a sequence of dependent samples, the
average surprisal converges to the entropy
rate . . . ?



Entropy Rates: Here Be Dragons?
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Random Processes: Definition

Definition
A discrete random process is a countably infinite collection of
random variables

X1,X2,X3,X4, . . .

with values in some discrete set X . A random process is thus a
distribution over the set of sample paths x1, x2, x3, . . ..
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Random Processes: Finite Projections

The Daniell-Kolmogorov Extension Theorem

If two random processes assign the same probabilities to all
initial-segment events of the form

X1 ∈ A1, X2 ∈ A2, . . . , Xn ∈ An,

then they are identical.

P. J. Daniell: “Integrals in An Infinite Number of Dimensions”
(Annals of Mathematics, Vol. 20(4), 1919).

A. Kolmogorov: Grundbegriffe der Wahrscheinlichkeitsrechnung
(Springer, 1933), Chapters 2.2 and 3.4.



Markov Chains: Definition

Definition
A random process P is a Markov chain if

P(Xn+1 |X1,X2, . . . ,Xn) = P(Xn+1 |Xn)

for all n. We call P(Xn+1 |Xn) its transition probabilities.

We often assume constant transition probabilities.
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Markov Chains: Modeling
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Markov Chains: Stationarity
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Markov Chains: Stationarity

Definition
A random process P is stationary if

P(X1 = x1, . . . ,Xn = xn) = P(X2 = x1, . . . ,Xn+1 = xn)

for all n and all value vectors (x1, x2, . . . , xn) ∈ X n.



Markov Chains: Stationarity
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Time-Averages

Definition
The nth time-average of a (measurable) function f : XN → R
on the sample path x = x1, x2, x3, . . . is

Anf(x) =
f(x1, x2, . . .) + f(x2, x3, . . .) + · · ·+ f(xn, xn+1, . . .)

n
.

The limiting time-average on x is limn→∞ Anf(x).

Main example:

f(x1, x2, x3, . . .) =

{
1 (x1 ∈ A)
0 (x1 6∈ A)



Convergence: Existence

The “Ergodic Theorem”

If a random process is stationary, then its time-averages
converge with probability 1.

J. von Neumann: “Proof of the Quasi-ergodic Hypothesis”
(Proceedings of the Natural Academy of Sciences of the USA,

Vol. 18(1), 1932).

G. D. Birkhoff: “Proof of the ergodic theorem”
(Proceedings of the Natural Academy of Sciences of the USA,

Vol. 17(12), 1931).



Time-Invariance

Definition
A set B of sample paths is called time-invariant if

(x1, x2, x3, . . .) ∈ B =⇒ (x2, x3, x4, . . .) ∈ B

Time-invariant predicates of x:

1. The sample path x never visits the set A ⊆ X .

2. The sample path x visits the set A ⊆ X infinitely often.

3. The sample path x is constant, x1 = x2 = x3 = · · · .
4. The sample path x eventually enters a trapping set A ⊆ X

and never leaves.

5. The sample path x passes through A ⊆ X with a relative
frequency that converges to f∗.



Time-Invariance

1 2

3

{1,2,3}N

{1,2}N{3}N

∅

x P(X = x)

1,2,1,2,1,2, . . . 1/3

2,1,2,1,2,1, . . . 1/3

3,3,3,3,3,3, . . . 1/3



Convergence: Uniqueness

Definition
A random process P is be ergodic if it assigns probability 0 or 1
to all time-invariant sets.

Uniqueness of Averages

Under an ergodic process, limiting time-averages are almost
constant (i.e., take the same fixed value with probability 1).

(Proof: From the cumulative distribution of limn Anf(X).)



Time-Averaged Surprisal

The Shannon-McMillan-Breiman Theorem
On a sample path drawn from a stationary and ergodic random
process, the average surprisal converges to the entropy rate with
probability 1.

B. McMillan: “The basic theorems of information theory”
(Annals of Mathematical Statics, Vol. 24, 1953).

L. Breiman: “The individual ergodic theorem of information
theory” (Annals of Mathematical Statics, Vol. 28, 1957).



Time-Averaged Surprisal

Half-Deterministic: 1
2Bernoulli(0) + 1

2Bernoulli(1/2)

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, . . .

1,0,1,0,0,1,0,0,0,1,1,1,0,1,1,0,1,0,0,0, . . .

A Stationary Markov Chain

ATHE_AT_ATHE_T_ATHE_TE_ATH_TH_A_A_THE . . .

Random Walk from X1 = 0

0,1,2,3,4,3,2,3,2,1,2,1,0,−1,−2,−1,0,−1,−2, . . .



Non-Ergodic Processes

Definition
Two distributions P1 and P2 are mutually singular if they have
disjoint supports.

Partitioning

Two stationary and ergodic processes P∗1 and P∗2 are either
identical or mutually singular.

(Proof: By projection to a finite-dimensional event.)



Non-Ergodic Processes

Definition
A distribution P is absolutely continuous with respect to a
reference distribution P∗ if

P∗(B) = 0 =⇒ P(B) = 0

Attractor Processes
If a random process P is absolutely continuous with respect to a
stationary and ergodic process P∗, then their limiting time-aver-
ages coincide.

(Proof: P∗(f∗) = 1, so P(f∗) = 1 by absolute continuity.)



Non-Ergodic Processes

Ups and Downs

Repeatedly print k ∼ Geometric(1/2) left-parentheses and
immediately after, k right-parentheses:

( ) ( ( ( ) ) ) ( ( ( ) ) ) ( ( ) ) ( ( ) ) ( ( ( ) ) ) ( ( ) ) . . .

Beta Urn
Draw a marble from an urn with 5 blue and 5 red marbles; add
an extra marble of the same color to the urn; repeat:

R R R B R R B R R R B R R B B B R R R B B R B R R R R R B B . . .

Xn ∼ Uniform{1,2, . . . ,2n}

1,1,3,6,11,26,58,70,185,435,467,909,2804,5262, . . .


